Cambridge IGCSE ${ }^{\text {TM }}$

PHYSICS

0625/31
Paper 3 Core Theory
May/June 2023
MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2023 series for most
Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Science-Specific Marking Principles

1 Examiners should consider the context and scientific use of any keywords when awarding marks. Although keywords may be present, marks should not be awarded if the keywords are used incorrectly.

2 The examiner should not choose between contradictory statements given in the same question part, and credit should not be awarded for any correct statement that is contradicted within the same question part. Wrong science that is irrelevant to the question should be ignored.

3 Although spellings do not have to be correct, spellings of syllabus terms must allow for clear and unambiguous separation from other syllabus terms with which they may be confused (e.g. ethane / ethene, glucagon / glycogen, refraction / reflection).

4 The error carried forward (ecf) principle should be applied, where appropriate. If an incorrect answer is subsequently used in a scientifically correct way, the candidate should be awarded these subsequent marking points. Further guidance will be included in the mark scheme where necessary and any exceptions to this general principle will be noted.

5 'List rule' guidance
For questions that require \boldsymbol{n} responses (e.g. State two reasons ...):

- The response should be read as continuous prose, even when numbered answer spaces are provided.
- Any response marked ignore in the mark scheme should not count towards \boldsymbol{n}.
- Incorrect responses should not be awarded credit but will still count towards \boldsymbol{n}.
- Read the entire response to check for any responses that contradict those that would otherwise be credited. Credit should not be awarded for any responses that are contradicted within the rest of the response. Where two responses contradict one another, this should be treated as a single incorrect response.
- Non-contradictory responses after the first \boldsymbol{n} responses may be ignored even if they include incorrect science.

6 Calculation specific guidance

Correct answers to calculations should be given full credit even if there is no working or incorrect working, unless the question states 'show your working'.

For questions in which the number of significant figures required is not stated, credit should be awarded for correct answers when rounded by the examiner to the number of significant figures given in the mark scheme. This may not apply to measured values.

For answers given in standard form (e.g. $a \times 10^{n}$) in which the convention of restricting the value of the coefficient (a) to a value between 1 and 10 is not followed, credit may still be awarded if the answer can be converted to the answer given in the mark scheme.

Unless a separate mark is given for a unit, a missing or incorrect unit will normally mean that the final calculation mark is not awarded. Exceptions to this general principle will be noted in the mark scheme.

7 Guidance for chemical equations
Multiples / fractions of coefficients used in chemical equations are acceptable unless stated otherwise in the mark scheme.
State symbols given in an equation should be ignored unless asked for in the question or stated otherwise in the mark scheme.

Acronyms and shorthand in the mark scheme

Acronym / shorthand	Explanation
A mark	Final answer mark which is awarded for fully correct final answers including the unit.
C mark	Compensatory mark which may be scored when the final answer (A) mark for a question has not been awarded.
B mark	Independent mark which does not depend on any other mark.
M mark	Method mark which must be scored before any subsequent final answer (A) mark can be scored.
Brackets ()	Words not explicitly needed in an answer, however if a contradictory word / phrase / unit to that in the brackets is seen the mark is not awarded.
Underlining	The underlined word (or a synonym) must be present for the mark to be scored. If the word is a technical scientific term, the word must be there.
I or OR	Alternative answers any one of which gains the credit for that mark.
owtte	Or words to that effect.
ignore	Indicates either an incorrect or irrelevant point which may be disregarded, i.e., not treated as contradictory.
insufficient	An answer not worthy of credit on its own.
CON	An incorrect point which contradicts any correct point and means the mark cannot be scored.
ecf [question part]	Indicates that a candidate using an erroneous value from the stated question part must be given credit here if the erroneous value is used correctly here.
cao	Correct answer only.
ORA reverse argument.	

Question	Answer	Marks
1(a)	(distance travelled =) 400 (m)	A3
	$($ distance travelled $=$) $1 / 2 \times 8 \times 100$	(C2)
	(distance travelled =) area under graph OR $1 / 2 \times b \times h$	(C1)
1(b)	(section Q) accelerating	B1
	(section R) constant speed OR steady speed	B1
	(section S) decelerating	B1
1(c)	(velocity =) $12 \mathrm{~m} / \mathrm{s}$	B1
	north	B1

Question	Answer	Marks
$2(a)$	(pressure $=) 0.8(0)\left(\mathrm{N} / \mathrm{cm}^{2}\right)$	A4
	(pressure $=) 1540 \div 1920$ OR $1540 \div(160 \times 12)$	(C3)
	(pressure $=)$ force \div area	(C1)
	(area in contact with ground $=) 12 \times 160=1920\left(\mathrm{~cm}^{2}\right)$	(C1)
2(b)	(moment $=) 120000(\mathrm{~N} \mathrm{~cm})$ OR $1.2 \times 10^{5}(\mathrm{Ncm})$	A3
	(moment $=) 1030 \times 120$	(C2)
	(moment $=)$ force $\times($ perpendicular) distance from pivot	
2(c)	move (lifting) force further from pivot owtte	B1
2(d)	centre of gravity $/$ mass is high(er) OR idea that area of base is small(er)	B1

Question	Answer	Marks
3(a)	C (energy from the Sun heats the atmosphere unevenly) - A F (moving air turns the turbine blades) B (the turbine blades turn a generator) E (the generator produces electrical energy) 4 correct - 3 marks 3 or 2 correct - 2 marks 1 correct - 1 mark	B3
3(b)	any two from: - idea of large(r) area of land needed - intermittent supply OR cannot work if wind too strong / weak - idea that energy output is small / not very large - (possible) harm to (migrating) birds - difficult to maintain (particularly if off-shore) - noise OR visual pollution	B2

Question	Answer	Marks
4(a)(i)	50 (J)	A3
	(work done =) 25×2.0	(C2)
	(work done $=$) force \times distance (moved in the direction of the force)	(C1)
4(a)(ii)	same as answer to (a)(i) OR 50 (J)	B1
4(a)(iii)	(some input energy is transferred as) thermal energy	B1
	to surroundings / motor	B1
4(b)	(power output =) 16 (W)	A3
	(power output $=$) $80 \div 5(.0)$	(C2)
	(power output $=$) energy output \div time	(C1)

Question	Answer	Marks
5(a)	any three from: - idea of (continuous) random movement (of gas particles) - collisions / impacts (of particles) - (collisions) with wall(s) of box - idea that force is produced (by colliding particles) - idea that pressure is force on an area	B3
5(b)	pressure increases	M1
	(as) more (frequent) collisions (with walls of box)	A1

Question	Answer	Marks
$6(\mathrm{a})$	idea of measure more than one wavelength	B1
	idea of dividing measurement by number of wavelengths (measured)	B1
$6(\mathrm{~b})$	(speed $=) 24(\mathrm{~cm} / \mathrm{s})$	A3
	(speed $=) 6(.0) \times 4(.0)$	(C2)
	$(v=) f \times \lambda$	(C1)
$6(\mathrm{c})$	(name of effect) refraction	B1
	change of speed	B1

Question	Answer	Marks
7(a)	both rays refracted toward principal axis	B1
	both rays meet at F_{1}	B1
7(b)	infrared (rays / waves) OR microwaves OR radio (waves)	B1
7(c)(i)	any one from: - sterilising food / water - sterilising (medical) equipment - detection of cancer - treatment of cancer - space telescopes	B1
7(c)(ii)	mutation (of cells / DNA) OR damage to cells / DNA	B1

Question	Answer	Marks
8(a)	two $\mathrm{N} /$ north poles on either side of gap	B1
8(b)	use of (plotting) compass or iron filings	B1
	use of (plotting) compass to show direction (of magnetic field line)	B1
	further details to method any two from: - idea of sprinkle / scatter iron filings (around magnets) - tap card - to arrange filings along field lines / to show (magnetic field) pattern - place compass near magnet - mark point at end of arrow - move compass OR multiple compasses in different positions - idea of plotting more than one line	B2

Question	Answer	Marks
9(a)	any two from: - switch - ammeter - variable resistor	B2
9(b)	(power =) $2.4(\mathrm{~W}$)	A3
	(power =) $0.4(0) \times 6(.0)$	(C2)
	(power =) $I \times V$	(C1)
9(c)	lamp symbol drawn in parallel with lamp in circuit	B1

Question	Answer	Marks
10(a)(i)	any two from: - magnetic field - cuts / links with coil / conductor / wire - e.m.f. / voltage / p.d. induced (in coil)	B2
10(a)(ii)	any two from: - increase strength of the magnet(ic field) - increase speed of the magnet - increase (the number of) turns on coil	B2
10(b)	$\left(V_{\text {s }}=\right) 7.5(\mathrm{~V})$	A3
	$V_{\mathrm{s}} / 180=200 / 4800$ OR $\left(V_{\mathrm{s}}=\right)(200 \times 180) \div 4800$	(C2)
	$V_{\mathrm{s}} / V_{\mathrm{p}}=N_{\mathrm{s}} / N_{\mathrm{p}}$	(C1)

Question	Answer				Marks
11(a)	name of particle	number of particles	position of particle	relative charge of particle	B4
	electron	6	orbiting / outside (nucleus)	-1 OR minus one	
	neutron	8	in the nucleus	0 OR zero OR none OR neutral	
	proton	6	(in the) nucleus	+1 (plus one)	
	1 mark for each correct column				
11(b)	$(2 \times 5700=) 11400$ (years)				A3
	(change in mass takes place over / decay takes) 2 half-lives				(C2)
	$8(.00) \rightarrow 4(.00) \rightarrow 2$ (00) OR $8(.00) \times 1 / 2 \times 1 / 2=2 .(00)$				(C1)

Question	Answer				Marks
12(a)	Earth rotates / spins (on its axis)				M1
	(once) every 24 hours / day OR daily				A1
12(b)	Mercury Venus	Earth	Mars		
	3 correct planets				M1
	in correct order				A1
12(c)	hydrogen				B1
	helium				B1
12(d)	Milky Way				B1

